Как страны мира отличаются друг от друга. Виды макроэкономических программ. Отличительные черты народов

Как страны мира отличаются друг от друга. Виды макроэкономических программ. Отличительные черты народов

Оксиды.

Это – сложные вещества состоящие из ДВУХ элементов, один из которых кислород. Например:

CuO – оксид меди(II)

AI 2 O 3 – оксид алюминия

SO 3 – оксид серы (VI)

Оксиды делятся (их классифицируют) на 4 группы:

Na 2 O – Оксид натрия

СаО – Оксид кальция

Fe 2 O 3 – оксид железа (III)

2). Кислотные – Это оксиды неметаллов . А иногда и металлов если степень окисления металла > 4. Например:

СО 2 – Оксид углерода (IV)

Р 2 О 5 – Оксид фосфора (V)

SO 3 – Оксид серы (VI)

3). Амфотерные – Это оксиды которые имеют свойства, как основных так и кислотных оксидов. Необходимо знать пять наиболее часто встречающихся амфотерных оксидов:

BeO –оксид бериллия

ZnO – Оксид цинка

AI 2 O 3 – Оксид алюминия

Cr 2 O 3 – Оксид хрома (III)

Fe 2 O 3 – Оксид железа (III)

4). Несолеобразующие (безразличные) – Это оксиды которые не проявляют свойств ни основных, ни кислотных оксидов. Необходимо запомнить три оксида:

СО – оксид углерода (II) угарный газ

NO – оксид азота (II)

N 2 O – оксид азота (I) веселящий газ, закись азота

Способы получения оксидов.

1). Горение, т.е. взаимодействие с кислородом простого вещества:

4Na + O 2 = 2Na 2 O

4P + 5O 2 = 2P 2 O 5

2). Горение, т.е. взаимодействие с кислородом сложного вещества (состоящего из двух элементов ) при этом образуются два оксида.

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

3). Разложение трех слабых кислот. Другие не разлагаются. При этом образуются – кислотный оксид и вода.

Н 2 СО 3 = Н 2 О + СО 2

Н 2 SO 3 = H 2 O + SO 2

H 2 SiO 3 = H 2 O + SiO 2

4). Разложение нерастворимых оснований. Образуются основный оксид и вода.

Mg(OH) 2 = MgO + H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

5). Разложение нерастворимых солей. Образуются основный оксид и кислотный оксид.

СаСО 3 = СаО + СО 2

МgSO 3 = MgO + SO 2

Химические свойства.

I . Основных оксидов.

щелочь.

Na 2 O + H 2 O = 2NaOH

CaO + H 2 O = Ca(OH) 2

СuO + H 2 O = реакция не протекает, т.к. возможное основание в состав которого входит медь - нерастворимо

2). Взаимодействие с кислотами, при этом образуется соль и вода. (Основный оксид и кислоты реагируют ВСЕГДА)

К 2 О + 2НСI = 2KCl + H 2 O

CaO + 2HNO 3 = Ca(NO 3) 2 + H 2 O

3). Взаимодействие с кислотными оксидами, при этом образуется соль.

Li 2 O + CO 2 = Li 2 CO 3

3MgO + P 2 O 5 = Mg 3 (PO 4) 2

4). Взаимодействие с водородом, при этом образуется металл и вода.

CuO + H 2 = Cu + H 2 O

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

II. Кислотных оксидов.

1). Взаимодействие с водой, при этом должна образоваться кислота. (Только SiO 2 не взаимодействует с водой)

CO 2 + H 2 O = H 2 CO 3

P 2 O 5 + 3H 2 O = 2H 3 PO 4

2). Взаимодействие с растворимыми основаниями (щелочами). При этом образуется соль и вода.

SO 3 + 2KOH = K 2 SO 4 + H 2 O

N 2 O 5 + 2KOH = 2KNO 3 + H 2 O

3). Взаимодействие с основными оксидами. При этом образуется только соль.

N 2 O 5 + K 2 O = 2KNO 3

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3

Основные упражнения.

1). Закончить уравнение реакции. Определить её тип.

К 2 О + Р 2 О 5 =

Решение.

Что бы записать, что образуется в результате – необходимо определить – какие вещества вступили в реакцию – здесь это оксид калия (основный) и оксид фосфора (кислотный) согласно свойств – в результате должна получиться СОЛЬ (смотри свойство № 3) а соль состоит из атомов металлов (в нашем случае калия) и кислотного остатка в состав которого входит фосфор (т.е. РО 4 -3 – фосфат) Поэтому

3К 2 О + Р 2 О 5 = 2К 3 РО 4

тип реакции – соединение (так как вступают в реакцию два вещества, а образуется – одно)

2). Осуществить превращения (цепочка).

Са → СаО → Са(ОН) 2 → СаСО 3 → СаО

Решение

Для выполнения этого упражнения необходимо помнить, что каждая стрелочка это одно уравнение (одна химическая реакция). Пронумеруем каждую стрелочку. Следовательно, необходимо записать 4 уравнения. Вещество записанное слева от стрелочки(исходное вещество) вступает в реакцию, а вещество записанное справа – образуется в результате реакции(продукт реакции). Расшифруем первую часть записи:

Са + …..→ СаО Мы обращаем внимание, что вступает в реакцию простое вещество, а образуется оксид. Зная способы получения оксидов (№ 1) приходим к выводу, что в данной реакции необходимо добавить –кислород (О 2)

2Са + О 2 → 2СаО

Переходим к превращению № 2

СаО → Са(ОН) 2

СаО + ……→ Са(ОН) 2

Приходим к выводу, что здесь необходимо применить свойство основных оксидов – взаимодействие с водой, т.к. только в этом случае из оксида образуется основание.

СаО + Н 2 О → Са(ОН) 2

Переходим к превращению № 3

Са(ОН) 2 → СаСО 3

Сa(OH) 2 + ….. = CaCO 3 + …….

Приходим к выводу, что здесь речь идет об углекислом газе СО 2 т.к. только он при взаимодействии со щелочами образует соль (смотри свойство № 2 кислотных оксидов)

Сa(OH) 2 + СО 2 = CaCO 3 + Н 2 О

Переходим к превращению № 4

СаСО 3 → СаО

СаСО 3 = ….. СаО + ……

Приходим к выводу что здесь образуется еще СО 2 , т.к. СаСО 3 нерастворимая соль и именно при разложении таких веществ образуются оксиды.

СаСО 3 = СаО + СО 2

3). С какими из перечисленных веществ взаимодействует СО 2 . Напишите уравнения реакций.

А). Соляная кислота Б). Гидроксид натрия В). Оксид калия г). Вода

Д). Водород Е). Оксид серы (IV).

Определяем, что СО 2 – это кислотный оксид. А кислотные оксиды вступают в реакции с водой, щелочами и основными оксидами … Следовательно из приведенного списка выбираем ответы Б, В, Г И именно с ними записываем уравнения реакций:

1). СО 2 + 2NaOH = Na 2 CO 3 + H 2 O

2). CO 2 + K 2 O = K 2 CO 3

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Оксид неметалла Оксид металла
1) Степень окисления неметалла +1 или +2
Вывод: оксид несолеобразующий
Исключение: Cl 2 O не относится к несолеобразующим оксидам
1) Степень окисления металла +1 или +2
Вывод: оксид металла — основный
Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3
Вывод: оксид кислотный
Исключение: Cl 2 O относится к кислотным оксидам, несмотря на степень окисления хлора +1
2) Степень окисления металла +3 или +4
Вывод: оксид амфотерный
Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов
3) Степень окисления металла +5, +6, +7
Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na 2 O, CaO, Rb 2 O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных оксидов . Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.
Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H 2 O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:
1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);
2) все кислотные оксиды, кроме диоксида кремния (SiO 2);

т.е. из вышесказанного следует, что с водой точно не реагируют :
1) все малоактивные основные оксиды;
2) все амфотерные оксиды;
3) несолеобразующие оксиды (NO, N 2 O, CO, SiO).

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды , реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K +1 2 O и Ba +2 O образуются соответствующие им гидроксиды K +1 OH и Ba +2 (OH) 2:

K 2 O + H 2 O = 2KOH – гидроксид калия

BaO + H 2 O = Ba(OH) 2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH) 2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами . Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO 3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H 2 S, сернистая H 2 SO 3 и серная H 2 SO 4 кислоты. Cероводородная кислота H 2 S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO 3 с водой можно сразу исключить. Из кислот H 2 SO 3 и H 2 SO 4 серу в степени окисления +6, как в оксиде SO 3 , содержит только серная кислота H 2 SO 4 . Поэтому именно она и будет образовываться в реакции SO 3 с водой:

H 2 O + SO 3 = H 2 SO 4

Аналогично оксид N 2 O 5 , содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO 3 , но ни в коем случае не азотистую HNO 2 , поскольку в азотной кислоте степень окисления азота, как и в N 2 O 5 , равна +5, а в азотистой — +3:

N +5 2 O 5 + H 2 O = 2HN +5 O 3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид ≠

3) амфотерный оксид + амфотерный оксид ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

Me x O y + кислотный оксид, где Me x O y – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного Me x O y) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na 2 O + P 2 O 5 и Al 2 O 3 + SO 3

В первой паре реагентов мы видим основный оксид (Na 2 O) и кислотный оксид (P 2 O 5). Во второй – амфотерный оксид (Al 2 O 3) и кислотный оксид (SO 3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na 2 O и P 2 O 5 должна образоваться соль, состоящая из катионов Na + (из Na 2 O) и кислотного остатка PO 4 3- , поскольку оксиду P +5 2 O 5 соответствует кислота H 3 P +5 O 4 . Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na 2 O + P 2 O 5 = 2Na 3 PO 4 — фосфат натрия

В свою очередь, при взаимодействии Al 2 O 3 и SO 3 должна образоваться соль, состоящая из катионов Al 3+ (из Al 2 O 3) и кислотного остатка SO 4 2- , поскольку оксиду S +6 O 3 соответствует кислота H 2 S +6 O 4 . Таким образом, в результате данной реакции получается сульфат алюминия:

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3 — сульфат алюминия

Более специфическим является взаимодействие между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO 2 x — , где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me +2 O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me +3 2 O 3 (например, Al 2 O 3 , Cr 2 O 3 и Fe 2 O 3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na 2 O и Al 2 O 3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me +2 O, а Na 2 O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na + (из Na 2 O) и «кислотного остатка»/аниона c формулой ZnO 2 2- , поскольку амфотерный оксид имеет общую формулу вида Me +2 O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na 2 ZnO 2:

ZnO + Na 2 O =t o => Na 2 ZnO 2

В случае взаимодействующей пары реагентов Al 2 O 3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me +3 2 O 3 , а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba 2+ (из BaO) и «кислотного остатка»/аниона AlO 2 — . Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO 2) 2 , а само уравнение взаимодействия запишется как:

Al 2 O 3 + BaO =t o => Ba(AlO 2) 2

Как мы уже писали выше, практически всегда протекает реакция:

Me x O y + кислотный оксид ,

где Me x O y – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO 2) и сернистый газ (SO 2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO 2 и SO 2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na 2 O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO 2 + Na 2 O = Na 2 CO 3

SO 2 + BaO = BaSO 3

В то время, как оксиды CuO и Al 2 O 3 , не относящиеся к активным основным оксидам, в реакцию с CO 2 и SO 2 не вступают:

CO 2 + CuO ≠

CO 2 + Al 2 O 3 ≠

SO 2 + CuO ≠

SO 2 + Al 2 O 3 ≠

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H 2 SO 4 = FeSO 4 + H 2 O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO 2 + 6HF = H 2 + 2H 2 O ,

а в случае недостатка HF:

SiO 2 + 4HF = SiF 4 + 2H 2 O

2) SO 2 , будучи кислотным оксидом, легко реагирует с сероводородной кислотой H 2 S по типу сопропорционирования :

S +4 O 2 + 2H 2 S -2 = 3S 0 + 2H 2 O

3) Оксид фосфора (III) P 2 O 3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P 2 O 3 + 2H 2 SO 4 + H 2 O =t o => 2SO 2 + 2H 3 PO 4
(конц.)
3 P 2 O 3 + 4HNO 3 + 7 H 2 O =t o => 4NO + 6 H 3 PO 4
(разб.)
2HNO 3 + 3SO 2 + 2H 2 O =t o => 3H 2 SO 4 + 2NO
(разб.)

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O

P 2 O 5 + 4KOH = 2K 2 HPO 4 + H 2 O

P 2 O 5 + 2KOH + H 2 O = 2KH 2 PO 4

«Привередливые» оксиды CO 2 и SO 2 , активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осно вные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH) 2 + CO 2 = (ZnOH) 2 CO 3 + H 2 O (в растворе)

2Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH) 3 , Cr(OH) 3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO 2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO 2 =t o => Na 2 SiO 3 + H 2 O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H 2 O = Na 2 — тетрагидроксоцинкат натрия

BeO + 2NaOH + H 2 O = Na 2 — тетрагидроксобериллат натрия

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na — тетрагидроксоалюминат натрия

Cr 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 — гексагидроксохромат (III) натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO 2 x — , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me 2 +2 O 3:

ZnO + 2NaOH =t o => Na 2 ZnO 2 + H 2 O

BeO + 2NaOH =t o => Na 2 BeO 2 + H 2 O

Al 2 O 3 + 2NaOH =t o => 2NaAlO 2 + H 2 O

Cr 2 O 3 + 2NaOH =t o => 2NaCrO 2 + H 2 O

Fe 2 O 3 + 2NaOH =t o => 2NaFeO 2 + H 2 O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na 2 =t o => Na 2 ZnO 2 + 2H 2 O

Na =t o => NaAlO 2 + 2H 2 O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO 2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO 2) и углекислый (CO 2) газы соответственно. Например:

Al 2 O 3 + Na 2 CO 3 =t o => 2NaAlO 2 + CO 2

SiO 2 + K 2 SO 3 =t o => K 2 SiO 3 + SO 2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K 2 СO 3 + SO 2 = K 2 SO 3 + CO 2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких трудновосстанавливаемых металлов, как хром и ванадий:

Cr 2 O 3 + 2Al =t o => Al 2 O 3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000 o C.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H 2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe 2 O 3 + 3CO =t o => 2Fe + 3CO 2

CuO + C =t o => Cu + CO

FeO + H 2 =t o => Fe + H 2 O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов. Например:

Fe 2 O 3 + CO =t o => 2FeO + CO 2

4CuO + C =t o => 2Cu 2 O + CO 2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют .

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al 2 O 3 + 9C =t o => Al 4 C 3 + 6CO

CaO + 3C =t o => CaC 2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными, щелочноземельными металлами и магнием:

CO 2 + 2Mg =t o => 2MgO + C

SiO 2 + 2Mg =t o => Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg 2 Si:

SiO 2 + 4Mg =t o => Mg 2 Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =t o => ZnO + N 2

NO 2 + 2Cu =t o => 2CuO + N 2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O 2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом реагировать не будут (!) .

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO 2):

2NO + O 2 = 2NO 2
бесцветный бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si , P , S , Cu , Mn , Fe , Cr ) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов к кислороду

С Минимальная среди основных положительных степеней окисления углерода равна +2 , а ближайшая к ней положительная — +4 . Таким образом, с кислородом из оксидов C +2 O и C +4 O 2 реагирует только CO. При этом протекает реакция:

2C +2 O + O 2 =t o => 2C +4 O 2

CO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si +2 O и Si +4 O 2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO 2 возможно окисление лишь части атомов кремния в оксиде Si +2 O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si 2 O 3 (Si +2 O·Si +4 O 2):

4Si +2 O + O 2 =t o => 2Si +2 ,+4 2 O 3 (Si +2 O·Si +4 O 2)

SiO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P +3 2 O 3 и P +5 2 O 5 реагирует только P 2 O 3 . При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P +3 2 O 3 + O 2 =t o => P +5 2 O 5

P +5 2 O 5 + O 2 ≠ — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S +4 O 2 , S +6 O 3 реагирует только SO 2 . При этом протекает реакция:

2S +4 O 2 + O 2 =t o => 2S +6 O 3

2S +6 O 3 + O 2 ≠ — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu +1 2 O, Cu +2 O реагирует только Cu 2 O. При этом протекает реакция:

2Cu +1 2 O + O 2 =t o => 4Cu +2 O

CuO + O 2 ≠ — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr +2 O, Cr +3 2 O 3 и Cr +6 O 3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr +2 O + O 2 =t o => 2Cr +3 2 O 3

Cr +3 2 O 3 + O 2 ≠ — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr +6 O 3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO 3 .

Cr +6 O 3 + O 2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn +2 O, Mn +4 O 2 , Mn +6 O 3 и Mn +7 2 O 7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn +2 O + O 2 =t o => 2Mn +4 O 2

в то время, как:

Mn +4 O 2 + O 2 ≠ и Mn +6 O 3 + O 2 ≠ — реакции не протекают, несмотря на то что существует оксид марганца Mn 2 O 7 , содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn +4 O 2 и Mn +6 O 3 нагрев существенно превышает температуру разложения получаемых оксидов MnO 3 и Mn 2 O 7.

Mn +7 2 O 7 + O 2 ≠ — данная реакция невозможна в принципе, т.к. +7 – высшая степень окисления марганца.

Fe Минимальная среди основных положительных степеней окисления железа равна +2 , а ближайшая к ней среди возможных — +3 . Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO 3 , впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe +2 O, либо смешанный оксид железа Fe +2 ,+3 3 O 4 (железная окалина):

4Fe +2 O + O 2 =t o => 2Fe +3 2 O 3 или

6Fe +2 O + O 2 =t o => 2Fe +2,+3 3 O 4

смешанный оксид Fe +2,+3 3 O 4 может быть доокислен до Fe +3 2 O 3:

4Fe +2 ,+3 3 O 4 + O 2 =t o => 6Fe +3 2 O 3

Fe +3 2 O 3 + O 2 ≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Оксиды - это бинарные соединения элемента с кислородом, находящимся в степени окисления (-2). Оксиды являются характеристическими соединениями для химических элементов . Неслучайно Д.И. Менделеев при составлении периодической таблицы ориентировался на стехиометрию высшего оксида и объединял в одну группу элементы с одинаковой формулой высшего оксида. Высший оксид - это оксид, в котором элемент присоединил максимально возможное для него количество кислородных атомов. В высшем оксиде элемент находится в своей максимальной (высшей) степени окисления. Так, высшие оксиды элементов VI группы, как неметаллов S, Se, Te, так и металлов Cr, Mo, W, описываются одинаковой формулой ЭО 3 . Все элементы группы проявляют наибольшее сходство именно в высшей степени окисления. Так, например, все высшие оксиды элементов VI группы - кислотные.

Оксиды - это самые распространенные соединения в металлургических технологиях .

Многие металлы находятся в земной коре в виде оксидов . Из природных оксидов получают такие важные металлы, как Fe, Mn, Sn, Cr.

В таблице приведены примеры природных оксидов, используемых для получения металлов.

Ме Оксид Минерал
Fe Fe 2 O 3 и Fe 3 O 4 Гематит и магнетит
Mn MnO 2 пиролюзит
Cr FeO . Cr 2 O 3 хромит
Ti TiO 2 и FeO . TiO 2 Рутил и ильменит
Sn SnO 2 Касситерит
Оксиды являются целевыми соединениями в ряде металлургических технологий . Природные соединения предварительно переводят в оксиды, из которых затем восстанавливают металл. Например, природные сульфиды Zn, Ni, Co, Pb, Mo обжигают, превращая в оксиды.

2ZnS + 3O 2 = 2 ZnO + 2SO 2

Природные гидроксиды и карбонаты подвергают термическому разложению, приводящему к образованию оксида.

2MeOOH = Me 2 O 3 + H 2 O

MeCO 3 = MeO + CO 2

Кроме того, поскольку металлы, находясь в окружающей среде, окисляются кислородом воздуха, а при высоких температурах, характерных для многих металлургических производств, окисление металлов усиливается, необходимы знания о свойствах получаемых оксидов.

Приведенные выше причины объясняют, почему при обсуждении химии металлов оксидам уделяется особое внимание.

Среди химических элементов металлов - 85, и многие металлы имеют не по одному оксиду, поэтому класс оксидов включает огромное количество соединений, и эта многочисленность делает обзор их свойств непростой задачей. Тем не менее, постарается выявить:

  • общие свойства, присущие всем оксидам металлов,
  • закономерности в изменениях их свойств,
  • выявим химические свойства оксидов, наиболее широко используемых в металлургии,
  • приведем некоторые из важных физических характеристик оксидов металлов.

Оксиды металлов различаются стехиометрическим соотношением атомов металла и кислорода . Эти стехиометрические соотношения определяют степень окисления металла в оксиде.

В таблице приведены стехиометрические формулы оксидов металлов в зависимости от степени окисления металла и указано, какие именно металлы способны образовывать оксиды данного стехиометрического типа.

Помимо таких оксидов, которые в общем случае могут быть описаны формулой МеО Х/2 , где Х - это степень окисления металла, существуют также оксиды, содержащие металл в разных степенях окисления, например, Fe 3 O 4 , а также, так называемые, смешанные оксиды, например, FeO . Cr 2 O 3 .

Не все оксиды металлов имеют постоянный состав, известны оксиды переменного состава, например, TiOx, где x = 0,88 - 1,20; FeOx, где x = 1,04 - 1,12 и др.

Оксиды s-металлов имеют только по одному оксиду. Металлы p- и d- блоков, как правило, имеют несколько оксидов, исключение Al, Ga, In и d-элементы 3 и 12 групп.

Оксиды типа MeO и Ме 2 О 3 образуют почти все d-металлы 4 периода . Для большинства d-металлов 5 и 6 периодов характерны оксиды, в которых металл, находится в высоких степенях окисления ³ 4 . Оксиды типа МеО, образуют только Cd, Hg и Pd; типа Me 2 O 3 , помимо Y и La, образуют Au, Rh; серебро и золото образуют оксиды типа Ме 2 O.

  • Стехиометрические типы оксидов металлов

    Степень окисления Тип оксида Металлы, образующие оксид
    +1 Me 2 O Металлы 1 и 11 групп
    +2 MeO Все d -металлы 4 периода (кроме Sc), все металлы 2 и 12 групп , а также Sn, Pb; Cd, Hg и Pd
    +3 Me 2 O 3 Почти все d -металлы 4 периода (кроме Cu и Zn), все металлы 3 и 13 групп , Au, Rh
    +4 MeO 2 Металлы 4 и 14 групп и многие другие d-металлы: V, Nb, Ta; Cr, Mo, W; Mn, Tc, Re; Ru, Os; Ir, Pt
    +5 Me 2 O 5 Металлы 5 и 1 5 групп
    +6 MeO 3 Металлы 6 группы
    +7 Me 2 O 7 Металлы 7 группы
    +8 MeO 4 Os и Ru
  • Структура оксидов

  • Подавляющее большинство оксидов металлов при обычных условиях - это твердые кристаллические вещества. Исключение - кислотный оксид Mn 2 O 7 (это жидкость темно-зеленого цвета). Лишь очень немногие кристаллы кислотных оксидов металлов имеют молекулярную структуру, это кислотные оксиды с металлом в очень высокой степени окисления: RuO 4 , OsO4, Mn 2 O 7 , Tc 2 O 7 , Re 2 O 7 .

    В самом общем виде структуру многих кристаллических оксидов металлов можно представить как регулярное трехмерное расположение кислородных атомов в пространстве, в пустотах между кислородными атомами находятся атомы металлов. Поскольку кислород - это очень электроотрицательный элемент, он перетягивает часть валентных электронов от атома металла, преобразуя его в катион, а сам кислород переходит в анионную форму и увеличивается в размерах за счет присоединения чужих электронов. Крупные кислородные анионы образуют кристаллическую решетку, а в пустотах между ними размещаются катионы металлов. Только в оксидах металлов, находящихся в небольшой степени окисления и отличающихся небольшим значение электроотрицательности, связь в оксидах можно рассматривать как ионную. Практически ионными являются оксиды щелочных и щелочноземельных металлов. В большинстве оксидов металлов химическая связь оказывается промежуточной между ионной и ковалентной . С повышением степени окисления металла вклад ковалентной составляющей возрастает.

  • Кристаллические структуры оксидов металлов

  • Координационные числа металлов в оксидах

    Металл в оксидах характеризуется не только степенью окисления, но и координационным числом , указывающим, какое количество кислородных атомов он координирует .

    Очень распространенным в оксидах металлов является координационное число 6, в этом случае катион металла находится в центре октаэдра, образованного шестью кислородными атомами. Октаэдры так упаковываются в кристаллическую решетку, чтобы выдерживалось стехиометрическое соотношение атомов металла и кислорода. Так в кристаллической решетке оксида кальция, координационное число кальция равно 6. Кислородные октаэдры с катионом Ca 2+ в центре так объединяются между собой, что каждый кислород оказывается в окружении шести атомов кальция, т.е. кислород принадлежит одновременно 6 атомам кальция. Говорят, что такой кристалл имеет координацию (6, 6). Первым указывается координационное число катиона, а вторым аниона. Таким образом формулу оксида СаО следовало бы записать
    СаО 6/6 ≡ СаО.
    В оксиде TiO 2 металл также находится в октаэдрическом окружении кислородных атомов, часть кислородных атомов соединяется противоположными ребрами, а часть вершинами. В кристалле рутила TiO 2 координация (6, 3) означает, что кислород принадлежит трем атомам титана. Атомы титана образуют в кристаллической решетке рутила прямоугольный параллепипед.

    Кристаллические структуры оксидов достаточно разнообразны. Металлы могут находиться не только в октаэдрическом окружении из кислородных атомов, но и в тетраэдрическом окружении, например в оксиде BeO ≡ BeO 4|4 . В оксиде PbO, также имеющем координацию кристалла (4,4), свинец оказывается в вершине тетрагональной призмы, в основании которой находятся атомы кислорода.

    Атомы металла могут находиться в разном окружении кислородных атомов, например в октаэдрических и в тетраэдрических пустотах, и металл при этом оказывается в разных степенях окисления , как например, в магнетите Fe 3 O 4 ≡ FeO . Fe 2 O 3 .

    Дефекты в кристаллических решетках объясняют непостоянство состава некоторых оксидов.

    Представление о пространственных структурах позволяет понять причины образования смешанных оксидов. В пустотах между кислородными атомами могут находиться атомы не одного металла, а двух разных , как например,
    в хромите FeO . Cr 2 O 3 .

  • Структура рутила

  • Некоторые физические свойства оксидов металлов

    Подавляющее большинство оксидов при обычной температуре это твердые вещества. Они имеют меньшую плотность, чем металлы.

    Многие оксиды металлов являются тугоплавкими веществами . Это позволяет использовать тугоплавкие оксиды как огнеупорные материалы для металлургических печей.

    Оксид CaO получают в промышленном масштабе в объеме 109 млн т/год. Его используют для футеровки печей. В качестве огнеупоров используют также оксиды BeO и MgO. Оксид MgO один из немногих огнеупоров очень устойчивых к действию расплавленных щелочей.

    Иногда тугоплавкость оксидов создает проблемы при получении металлов электролизом из их расплавов. Так оксид Al 2 O 3 , имеющий температуру плавления около 2000 о С, приходится смешивать с криолитом Na 3 , чтобы снизить температуру плавления до ~ 1000 о С, и через этот расплав пропускать электрический ток.

    Тугоплавкими являются оксиды d-металлов 5 и 6 периодов Y 2 O 3 (2430), La 2 O 3 (2280), ZrO 2 (2700), HfO 2 (2080), Ta 2 O 5 (1870), Nb 2 O 5 (1490), а также многие оксиды d-металлов 4 периода (см. табл.). Высокие температуры плавления имеют все оксиды s-металлов 2 группы, а также Al 2 O 3 , Ga 2 O 3 , SnО,SnO 2 , PbO (см. табл.).

    Низкие температуры плавления (о С) обычно имеют кислотные оксиды: RuO 4 (25), OsO 4 (41); Te 2 O 7 (120), Re 2 O 7 (302), ReO 3 (160), CrO 3 (197). Но некоторые кислотные оксиды имеют достаточно высокие температуры плавления (о С): MoO 3 (801) WO 3 (1473), V 2 O 5 (680).

    Некоторые из основных оксидов d-элементов, завершающих ряды, оказываются непрочными, плавятся при низкой температуре или при нагревании разлагаются. Разлагаются при нагревании HgO (400 o C), Au 2 O 3 (155), Au 2 O, Ag 2 O (200), PtO 2 (400).

    При нагревании выше 400 о С разлагаются и все оксиды щелочных металлов с образованием металла и пероксида. Оксид Li 2 O более устойчив и разлагается при температуре выше 1000 о С.

    В таблице, приведенной ниже, приводятся некоторые характеристики d-металлов 4 периода, а также s- и p-металлов.

  • Характеристики оксидов s- и р-металлов

    Me Оксид Цвет Т пл., оС Кислотно-основной характер
    s-металлы
    Li Li 2 O белый Все оксиды разлагаются при
    T > 400 о С, Li 2 O при Т > 1000 o C
    Все оксиды щелочных металлов основные, растворяются в воде
    Na Na 2 O белый
    K K 2 O желтый
    Rb Rb 2 O желтый
    Cs Cs 2 O оранжевый
    Be BeO белый 2580 амфотерный
    Mg MgO белый 2850 основной
    Ca CaO белый 2614 Основные, ограниченно растворяются в воде
    Sr SrO белый 2430
    Ba BaO белый 1923
    p-металлы
    Al Al 2 O 3 белый 2050 амфотерный
    Ga Ga 2 O 3 желтый 1795 амфотерный
    In In 2 O 3 желтый 1910 амфотерный
    Tl Tl 2 O 3 коричневый 716 амфотерный
    Tl 2 O черный 303 основной
    Sn SnO темно-синий 1040 амфотерный
    SnO 2 белый 1630 амфотерный
    Pb PbO красный Переходит в желтый при Т > 490 о С амфотерный
    PbO желтый 1580 амфотерный
    Pb 3 O 4 красный Разл.
    PbO 2 черный Разл. При 300 о С амфотерный
    Химические свойства (см. по ссылке)
  • Характеристики оксидов d-металлов 4 периода

    Оксид Цвет r, г/см3 Т пл., оС - ΔGo, кДж/моль - ΔHo, кДж/моль Преобладающий

    Кислотно-основной характер

    Sc Sc 2 O 3 белый 3,9 2450 1637 1908 основной
    Ti TiO коричневый 4,9 1780, p 490 526 основной
    Ti 2 O 3 фиолетовый 4,6 1830 1434 1518 основной
    TiO 2 белый 4,2 1870 945 944 амфотерный
    V VO серый 5,8 1830 389 432 основной
    V 2 O 3 черный 4,9 1970 1161 1219 основной
    VO 2 синий 4,3 1545 1429 713 амфотерный
    V 2 O 5 оранжевый 3,4 680 1054 1552 кислотный
    Cr Cr 2 O 3 зеленый 5,2 2335 p 536 1141 амфотерный
    CrO 3 красный 2,8 197 p 513 590 кислотный
    Mn MnO Серо-зеленый 5,2 1842 385 385 основной
    Mn 2 O 3 коричневый 4,5 1000 p 958 958 основной
    Mn 3 O 4 коричневый 4,7 1560 p 1388 1388
    MnO 2 коричневый 5,0 535 p 521 521 амфотерный
    Mn 2 O 7 зеленый 2,4 6, 55 p 726 кислотный
    Fe FeO Черный 5,7 1400 265 265 основной
    Fe 3 O 4 черный 5,2 1540 p 1117 1117
    Fe 2 O 3 коричневый 5,3 1565 p 822 822 основной
    Co CoO Серо-зеленый 5,7 1830 213 239 основной
    Co 3 O 4 черный 6,1 900 p 754 887
    Ni NiO Серо-зеленый 7,4 1955 239 240 основной
    Cu Cu 2 O оранжевый 6,0 1242 151 173 основной
    CuO черный 6,4 800 p 134 162 основной
    Zn ZnO белый 5,7 1975 348 351 амфотерный
    Химические свойства (см. по ссылке)
  • Кислотно-основной характер оксидов зависит от степени окисления металла и от природы металла.

    Чем ниже степень окисления, тем сильнее проявляются основные свойства. Если металл находится в степени окисления Х £ 4 , то его оксид имеет либо основной, либо амфотерный характер.

    Чем выше степень окисления, тем сильнее выражены кислотные свойства . Если металл находится в степени окисления Х 5 , то его гидроксид имеет кислотный характер.

    Кроме кислотных и основных оксидов существуют амфотерные оксиды, проявляющие одновременно и кислотные и основные свойства .

    Амфотерны все оксиды p-металлов, кроме Tl 2 O .

    Из s -металлов только Be имеет амфотерный оксид.

    Среди d-металлов амфотерными являются оксиды ZnO, Cr 2 O 3 , Fe 2 O 3 , Au 2 O 3 , и практически все оксиды металлов в степени окисления +4 за исключением основных ZrO 2 и HfO 2 .

    Большинство оксидов, в том числе, Cr 2 O 3 , Fe 2 O 3 и диоксиды металлов проявляют амфотерность лишь при сплавлении со щелочами. С растворами щелочей взаимодействуют ZnO, VO 2 , Au 2 O 3 .

    Для оксидов, помимо кислотно-основных взаимодействий, т. е. реакций между основными оксидами и кислотами и кислотными оксидами, а также реакций кислотных и амфотерных оксидов со щелочами, характерны также окислительно-восстановительные реакции.

  • Окислительно-восстановительные свойства оксидов металлов

    Поскольку в любых оксидах металл находится в окисленном состоянии, все оксиды без исключения способны проявлять окислительные свойства .

    Самые распространенные реакции в пирометаллургии - это окислительно-восстановительные взаимодействия между оксидами металлов и различными восстановителями, приводящие к получению металла.

    Примеры

    2Fe 2 O 3 + 3C = 4Fe + 3CO 2

    Fe 3 O 4 + 2C = 3Fe + 2CO 2

    MnO 2 +2C = Mn + 2CO

    SnO 2 + C = Sn + 2CO 2

    ZnO + C = Zn + CO

    Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

    WO 3 + 3H 2 = W + 3H 2 O

    Если металл имеет несколько степеней окисления, то при достаточном повышении температуры становится возможным разложение оксида с выделением кислорода.

    4CuO = 2Cu 2 O + O 2

    3PbO 2 = Pb 3 O 4 + O 2 ,

    2Pb 3 O 4 = O 2 + 6PbO

    Некоторые оксиды, особенно оксиды благородных металлов, при нагревании могут разлагаться с образованием металла.

    2Ag 2 O = 4Ag + O 2

    2Au 2 O 3 = 4Au + 3O 2

    Сильные окислительные свойства некоторых оксидов используются на практике. Например,

    Окислительные свойства оксида PbO 2 используют в свинцовых аккумуляторах, в которых за счет химической реакции между PbO 2 и металлическим свинцом получают электрический ток.

    PbO 2 + Pb + 2H 2 SO 4 = 2PbSO 4 + 2H 2 O

    Окислительные свойства MnO 2 также используют для получения электрического тока в гальванических элементах (электрических батарейках).

    2MnO 2 + Zn + 2NH 4 Cl = + 2MnOOH

    Сильные окислительные свойства некоторых оксидов приводят к их своеобразному взаимодействию с кислотами. Так оксиды PbO 2 и MnO 2 при растворении в концентрированной соляной кислоте восстанавливаются.

    MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O
    Если металл образует несколько оксидов, то оксиды металла в более низкой степени окисления могут окисляться, т. е. проявлять восстановительные свойства.

    Особенно сильные восстановительные свойства проявляют оксиды металлов в низких и неустойчивых степенях окисления, как например. TiO, VO, CrO. При растворении их в воде они окисляются, восстанавливая воду. Их реакции с водой, подобны реакциям металла с водой.

    2TiO + 2H 2 O = 2TiOOH + H 2 .

  • Оксиды являются сложными веществами, состоящими из двух элементов, из которых один - кислород во второй степени окисления.

    В химической литературе для номенклатуры оксидов придерживаются следующих правил:

    1. При написании формул кислород всегда ставят на втором месте - NO, CaO.
    2. Называя оксиды, сначала всегда употребляют слово оксид, после него в родительном падеже идет название второго элемента: BaO - оксид бария, K₂O - оксид калия.
    3. В случае, когда элемент образовывает несколько оксидов, после его названия указывают в скобках этого элемента, например N₂O₅ - (V), Fe₂O₃ - оксид железа (II), Fe₂O₃ - оксид железа (III).
    4. Называя самые распространенные оксиды, обязательно необходимо соотношения атомов в молекуле обозначать соответствующими греческими числительными: N₂O - оксид диазота, NO₂ - диоксид азота, N₂O₅ - пентаоксид диазота, NO - монооксид азота.
    5. Ангидриды желательно называть точно так же как оксиды (например, N₂O₅ - (V)).

    Оксиды можно получить несколькими различными способами:

    1. Взаимодействием с кислородом простых веществ. Простые вещества окисляются при нагревании часто с выделением теплоты и света. Данный процесс называется горением
      C + O₂ = CO₂
    2. Благодаря окислению получаются оксиды элементов, которые включены в состав исходного вещества:
      2H₂S + 3O₂ = 2 H₂O + 2 SO₂
    3. Разложением нитратов, гидроксидов, карбонатов:
      2Cu(NO₃)₂ = 2CuO + 4NO₂ + O₂
      CaCO₃ = CaO + CO₂
      Cu(OH)₂ = CuO + H₂O
    4. В результате окисления металлов оксидами иных элементов. Подобные реакции стали основой металлотермии - восстановления металлов из их оксидов с помощью более активных металлов:
      2Al + Cr₂O₃ = 2Cr ±Al₂O₃
    5. Путем разложения либо доокислением низших:
      4CrO₃ = 2Cr₂O₃ + 3O₃
      4FeO + O₂ = 2Fe₂O₃
      4CO + O₂ = 2CO₂

    Классификация оксидов на основе их химических свойств подразумевает их деление на солеобразующие и несолеобразующие оксиды (безразличные). Солеобразующие оксиды, в свою очередь, делят на кислотные, основные и амфотерные.

    Основным оксидам соответствуют основания. Например, Na₂O, CaO, MgO - основные оксиды, так как им соответствуют основания - NaOH, Ca(OH)₂, Mg(OH)₂. Некоторые оксиды (K₂O и CaO) легко вступают в реакцию с водой и образуют соответствующие основания:

    CaO + H₂O = Ca(OH)₂

    K₂O + H₂O = 2KOH

    Оксиды Fe₂O₃, CuO, Ag₂O с водой в реакцию не вступают, но нейтрализуют кислоты, благодаря чему считаются основными:

    Fe₂O₃, + 6HCl = 2FeCl₃ + 3H₂OCuO + H₂SO₄ + H₂O

    Ag₂O + 2HNO₃ = 2AgNO₃ + H₂O

    Типичные химические свойства оксидов такого вида - их реакция с кислотами, в результате которой, как правило, образуются вода и соль:

    FeO + 2HCl = FeCl₂ + H₂O

    Основные оксиды вступают в реакцию также с кислотными оксидами:

    CaO + CO₂ = CaCO₃.

    Кислотным оксидам соответствуют кислоты, К примеру, оксиду N₂O₃ соответствует HNO₂, Cl₂O₇ - HClO₄, SO₃ - серная кислота H₂SO₄.

    Основными химическим свойством таких оксидов является их реакция с основаниями, образуется соль и вода:

    2NaOH + CO₂ = NaCO₃ + H₂O

    Большинство кислотных оксидов вступают в реакцию с водой, образуя соответствующие кислоты. В то же время оксид SiO₂ практически нерастворим в воде, однако он нейтрализует основания, следовательно, является кислотным оксидом:

    2NaOH + SiO₂ = (сплавление) Na₂siO₃ + H₂O

    Амфотерные оксиды - это оксиды, которые в зависимости от условий демонстрируют кислотные и основные свойства, т.е. при взаимодействии с кислотами ведут себя как основные оксиды, а при взаимодействии с основаниями - как кислотные.

    Не все амфотерные оксиды в одинаковой степени взаимодействуют с основаниями и кислотами. У одних более выражены основные свойства, у других - кислотные.

    Если оксид цинка или хрома в одинаковой степени реагирует с кислотами и основаниями, то у оксида Fe₂O₃ преобладают основные свойства.

    Свойства амфотерных оксидов показаны на примере ZnO:

    ZnO + 2HCl = ZnCl₂ + H₂O

    ZnO + 2NaOH = Na₂ZnO₂ + H₂O

    Несолеобразующие оксиды не образуют ни кислот, ни оснований (например, N₂O, NO).

    Кроме того, они не дают реакций, характерных для солеобразующих оксидов. Несолеобразующие оксиды могут вступать в реакцию с кислотами или щелочами, но при этом не образуются продукты, характерные для солеобразующих оксидов, например при 150⁰С и 1,5 МПа СО реагирует с гидроксидом натрия с образованием соли - формиата натрия:

    СО + NaOH = HCOONa

    Несолеобразующие оксиды распространеніы не так широко как остальные виды оксидов и образуются, в основном, при участии двухвалентных неметаллов.



    просмотров